
Appears in Proceedings Graphics Interface '94, 1994, 133-140.

Multimedia for Authoring Motion Pictures

Alan J Rosenthal
flaps@dgp.utoronto.ca

(416) 923 6641 ext. 2279

Ronald M. Baecker
baecker@dgp.utoronto.ca

(416) 978 6983

Dynamic Graphics Project
Department of Computer Science, University of Toronto

Toronto, Ontario, Canada M5S 1A4
Fax: (416) 978 5184

Abs t rac t
In this article we present a computer program called

“MAD”, Movie Authoring and Design. Whereas most
computer software for filmmaking focuses on the
editing and post-production stage, MAD is designed
specifically to support the authoring stage, and may be
used before any film footage is shot. It assists in the
process of developing and refining the concept for a
movie by supporting the intrinsically hierarchical
nature of movies; it supports a top-down design
approach as well as a bottom-up implementation
approach. MAD allows the user to keep script, story-
boards, sounds, and digitized video clips together in a
single document. Visualizing the final result is assisted
by the “play” feature, which allows an approximation
to the final film to be played on the author’s work-
station at any time. The accuracy of this approxi-
mation increases as additional script, timing informa-
tion, and other data is added to the movie.

Keywords: Multimedia, Motion Pictures, Authoring
Tools, Interactive Systems.

Introduction
The goal of this work is to enhance significantly

the ease and creativity with which filmmakers are able
to author and create motion pictures. Inspiration for
this work has been drawn in part from recent advances
in technology for writing documents, designing soft-
ware, and creating music.

Written documents
Probably the most common use of computers

today is the creation and editing of “documents”, such
as papers, memos, notes, and books. “Word
processors” allow editing of documents, so that
subsequent drafts do not require complete re-typing but
only the typing of the changes to the document. They
also create new ways of thinking by allowing users to
write documents in an arbitrary sequence. Word

processors make it easy to navigate around a document
which gradually coalesces. The user can add additional
text at any point in the document. It is also common
to use “place-holders”, where the user types strings such
as “???” or “more...”, intended to be filled in later.
While the draft of the document gradually moves
towards its final form, the user can print the document
at any time. The draft document is printed with all
section headings and place-holder text and thus forms an
approximation of the final form of the document.

“Outline processors” (such as “MORE”, Symantec,
1990) augment this with explicit support for a hierar-
chical structure. A book consists of chapters; a chapter
may consist of sections; and so on. A presentation
may consist of an introduction, a series of general
topics, and a conclusion. Each particular topic may
consist of subtopics, and so on. An outline processor
provides facilities for creating and manipulating the
hierarchy as well as the text in it. The detail of certain
portions of the structure can be suppressed while one’s
editing attention is focused elsewhere. The user can
work in a “top-down” approach or in a “bottom-up”
approach. For some, an outline processor is the appli-
cation program of choice for the creation and editing of
certain kinds of structured documents or plans. Again,
an outline can be printed at any time even though it is
incomplete.

Computer software
Modern computer programming practice illustrates

the utility of a hierarchical structure. Skilled computer
programmers use a steep structure in which software
components are broken down into subcomponents, sub-
subcomponents, and so on, to many levels of depth.
Computer programmers find a good structure to be es-
sential to performing their craft.

Despite an apparently adequate expression of com-
puter program structure in computer programming lan-
guages themselves, some programmers pursue more ad-
vanced tools for manipulating or at least displaying the

Appears in Proceedings Graphics Interface '94, 1994, 133-140.

structure of the computer program or its associated data.
Some of these involve sophisticated layout and display
algorithms (e.g. Graham and Cordy, 1990). It is im-
portant to note that these representations are often not
equivalent to the original information; unimportant in-
formation may be omitted and additional information
may be synthesized (e.g. Baecker and Marcus, 1990).
Increasing use is being made of visual representations,
which are quite valuable because a different modality
can cause a fresh interpretation of information. The
value of visual representation for computer programs
and other structured objects is discussed at length by
Martin and McClure (1985), who present a variety of
kinds of visual representations and extensive advice on
their use.

When applied to computer software, these tech-
niques are known collectively as software
visualization. There is a substantial body of work in
this area; over one hundred references may be found in
Price, Baecker, and Small (1993).

Music
Many segments of the music industry have been

transformed over the past decade by the advent of syn-
thesizers and mixing boards controllable by MIDI
commands (Loy, 1985). Now many composers will
create their works using synthesizers and computers. A
computer can store sufficient information to be able to
create a facsimile of non-digital music by controlling
sampling synthesizers; this facsimile can be suitable for
many exploratory purposes. Computers can also be
used to create a list of audio mixing commands to as-
semble the final version of the recorded music. In both
cases the user realizes the usual advantages of computer
technology; an error in mixing can be repaired without
re-mixing the entire piece of music. In the synthesizer
case, an individual can hear an approximation to what a
larger ensemble of musicians would sound like when
playing this music, which provides a “visualization”
tool analogous to the early printing of draft word pro-
cessor documents.

One notable result of the advent of MIDI is that it
provides a novel “external” form of music. As with
any other creative medium, music can be presented
(performed) but is difficult to describe by other means.
Nevertheless, musicians require methods of communi-
cating about music. The chief method of describing
music other than by presenting it is to produce sheet
music, a written representation of music. MIDI has
added a new external form of music. Certain kinds of
musical ideas and proposed musical recordings can now
be communicated via floppy disk.

Guide to this paper
We begin with a little background on the use of

computers for motion picture and multimedia produc-
tion. We then begin our discussion of MAD by pre-

senting some design goals. Next, we describe our pro-
totype implementation, still under development but al-
ready in use. One experience of using the system is de-
scribed. Finally, we present some future directions and
planned extensions to these ideas.

Uses of Computers for Motion Picture and
Multimedia Production

The motion picture production process can be di-
vided into “pre-production”, shooting, and “post-produc-
tion”. Pre-production includes endeavours such as
scriptwriting, storyboard drawing, set design, location
scouting, and the hiring of actors. Post-production in-
cludes the selection from alternate “takes”, assembly,
editing, sound mixing, and adding visual effects.

Pre-production
MacroMedia Director (MacroMedia, 1991) is an in-

tegrated system for designing a visual sequence. It is a
complex scripting environment in which the elements
can be arbitrary images, sounds, or externally-controlled
devices. The user creates a “score” which specifies
which “cast members” (images) appear at what times,
and where. The score also specifies at what point
sounds are started and stopped (cut off). Arbitrary com-
puter program text can be associated with cast members
or with “frames” (sequence points), or it can be global
to the movie. This achieves a very high degree of flex-
ibility in the presentation.

Unfortunately, there are many drawbacks to
Director. Its major flaw with respect to the authoring
of a film is its lack of explicit movie structure. With
Director, we can lose the fundamental advantage that
computer technology can bring to an application area,
that of easy revision. Early choices influence subse-
quent work so profoundly that it is often not worth at-
tempting to make major changes to a Director “movie”;
the cause of a given visual event may be distributed
throughout the Director “movie” structure. This issue
of structure in Director is discussed more fully by
Hardman, van Rossum, and Bulterman (1993).

Director also suffers from a number of minor short-
falls which render it unsuitable for traditional films,
such as extreme imprecision of sound synchronization.
A Director script whose sound is roughly synchronized
on one computer may produce very bad results on
another.

Post-production
In recent years there have been several computer

post-production systems capable of supporting the for-
mulation of the final edit, such as The Avid Media
Composer (Avid, 1993). With Avid, a filmmaker digi-
tizes all of their footage from videotape onto a large
storage volume. Avid then allows most of the usual
film editing operations; using Avid to edit videotape
feels more like film editing than video editing and has

Appears in Proceedings Graphics Interface '94, 1994, 133-140.

many of the advantages of the film medium. The user
can form film clips and arrange them in bins. The digi-
tization is frame-accurate, so final decisions can be
made regarding cuts. When the visual quality of an in-
dividual digitized frame is insufficient, Avid can manip-
ulate a computer-controlled VCR to display the frame
from videotape on a video-editing monitor. The user
can edit the entire film using Avid, and then use Avid
to create an “edit decision list”, which contains suffi-
cient information for video editing equipment to assem-
ble the final form of the film.

A system such as The Avid Media Composer ad-
dresses solely the problems of editing and post-produc-
tion. Obviously these are crucial parts of the film-
making process, but they are only parts. Use of Avid
begins only after all video footage has been shot;
shooting often begins only after a completed script has
been decided upon.

Multimedia
Most modern computers can present a variety of

images and sounds, not just text. Many can produce de-
tailed colour images; many can produce good musical
sounds; some can present full-motion video. An in-
creasing number of media are able to be stored electroni-
cally or digitally, and many modern electronic devices
are designed to be able to be controlled by computers.
“Multimedia” systems attempt to bring these various
modalities to the computer user.

Research in this area tends to address either the
issue of how to use and organize or sequence all of the
information (e.g. Pea, 1991), or how to increase access
to media and devices (Woolsey, 1991). With respect to
the current work, organizing the information is of
greater interest, since video and imaging equipment has
been computer-controllable for quite some time.
Davenport, Smith, and Pincever (1991) propose the use
of film terminology and concepts for the organizing of
video clips. However, their project quite clearly veers
away from the goals of traditional filmmaking. It is
not capable of performing at professional filmmaking
standards because it treats shots as atomic: crucial edit-
ing operations are unavailable, and sound cannot be
manipulated independently. Generally, these projects
share with MacroMedia Director an orientation towards
a non-filmmaking audience.

Design Goals For Mad
Supporting multiple data types in an integrated fashion

In the authoring of motion pictures, various docu-
ments and sketches are produced. There may be a script
in the classic form as well as a separate storyboard
script. The properties and uses of these various items
are discussed in detail by Katz (1991). Production in-
formation may be tracked by handwriting on one partic-
ular printed copy of the script which may become obso-
lete but be retained because it has the production infor-

mation on it. The director may also produce a version
of the script which focuses on direction. Others may do
what a computer programmer might think of as
“sorting” the script, to organize it based on shooting
schedule, props required, or actors required for shooting.

While working on a script on the computer, vari-
ous elements could be available. The Macintosh com-
puter supports various “data types” in addition to text
such as pictures, digitized video clips, and sounds. We
believe that all of this data should be manipulated in an
integrated fashion where possible, and a good movie au-
thoring tool would allow the user to attach these things
to the script. Alternatively stated, a good movie
authoring tool would allow the user to attach the script
to these various data types.

Supporting hierarchical structure: top-down design,
bottom-up implementation

A film has a complex structure. One of the tasks
involved in authoring is moving around in that struc-
ture, as discussed earlier with respect to document pro-
cessing. In traditional filmmaking, a substantial
amount of time and effort is devoted to organization.
Similarly, any film author has overall goals, and there
is a structure to the film; there is more than just the
images and sounds. An example of an overall goal is
the highest-level organization of the topics discussed by
a film.

It is often beneficial to think in terms of a hierar-
chical structure. There are different methods of breaking
down a film, but a film may consist of acts, which may
consist of scenes, which may consist of shots, which
may consist of individual movie frames. We believe
that film authoring is often done in a “top-down” fash-
ion, in which the overall structure of the film (e.g. acts)
is decided upon first, and only after the breakdown into
individual scenes are individual shots considered. An
early preoccupation with details can focus on a bottom-
up approach; support for a hierarchical approach would
allow users to organize their thoughts in a structured
manner. Of course, experienced filmmakers achieve
this structure of thought already, through the depths of
their experience, and attempt to have a complete script
written before becoming entangled with lower-level
details.

The experience from computer software design tells
us that an exclusively top-down approach is not much
more suitable than an exclusively bottom-up approach.
Thus a good movie authoring tool must allow the user
to work top-down or bottom-up as required.

Visualizing the result
Even given the flexibility to work at a desired level

of the structure, there remains an overview problem.
When completed, the film will have a certain character,
and elements of the film which step unnecessarily out-
side that character may not contribute to the film. An

Appears in Proceedings Graphics Interface '94, 1994, 133-140.

act attempting to convey some particular view will suf-
fer from a scene which is not sufficiently aligned with
the purpose of the act.

To design appropriate elements of a film, a film-
maker must have a strong vision of the film. But this
vision will change as the film is invented. There is a
constant need to stay in touch with the evolving “feel”
and character of the film. This becomes quite difficult
when working at a low level.

A good movie authoring tool should contain facili-
ties for assisting the user in maintaining an overview of
the developing film. One important aspect of MAD is
the “play” facility, with which an approximation to the
final form of the film can be viewed on the user’s work-
station at any time. We believe this to be analogous to
the way that a word processor user can print the docu-
ment being written at any time during its development.
The “play” facility also allows an author to present the
script as a dynamic demonstration of ideas for a film.
This is analogous to the use of MIDI files as a ma-
chine-playable external form of music, capable of being
brought to life more automatically than sheet music.

Other desirable displays or abstractions include a
time-line facility, and the accumulation of various
statistics pertaining to the script under development.

The System
The current prototype of MAD runs on an Apple

Macintosh computer. Apart from the content of the in-
dividual items, MAD resembles most of all an outline
processor. Although MAD imposes no structure, the
top level items will often refer to “acts”, the items
within acts will refer to “scenes”, and so on. Each item
itself can have a variety of kinds of data attached to it,
and can have subitems. Data can be imported from
some standard Macintosh file formats.

How the structure is manipulated
There are commands to add items into the desired

position in the hierarchy. It is also possible to move
entire portions of the hierarchy to new places; thus a
single operation will take scene 3 and put it before
scene 1, along with all of its subitems. Similarly a
subitem of scene 3 can be moved to after scene 3 itself,
to become a scene 4 rather than a subitem of scene 3.

Since the indentation may get unwieldy with more
than a level or two, it is possible to “zoom in” to an
item. In Figure 1, the view is the entire movie, whose
name appears in the upper-left corner. After zooming
in to a given item, that item’s title takes the place of
that of the film in the upper-left, and only that item’s
subitems are shown. This means that that item’s
subitems are moved back over to the left margin rather
than being indented unreasonably far to the right.

By zooming in, the user excludes higher levels of
detail. It is also possible to exclude lower levels of de-
tail with the “expand” and “contract” mechanisms. In
the above figure, we see the single shot comprising
scene 2. In the left column there is a downward-point-
ing triangle, with the same meaning as in the
Macintosh System 7 Finder “view by name” interface.
Pressing this triangle will cause it to turn to the right,
and the scene will be contracted, meaning that no
subitems are displayed. To see the subitems, the user
can zoom in to the scene, or can press the triangle again
to expand the item. There are also special “expand all”
and “contract all” commands; “contract all” enables the
user to view only the current level, with a single opera-
tion.

These functions are largely equivalent to those of a
typical outline processor.

Figure 1: The MAD main view
Scenes, a shot in scene 2, and other data associated with these items in the script for the

film “How to Hyoop”. The nesting of items is indicated by indentation of the text.

Appears in Proceedings Graphics Interface '94, 1994, 133-140.

Data represented by the system
In the current system, the main focus is on the

written script. Script components are the titles of
items (e.g. the names of the scenes), descriptive text,
and spoken text (narration or dialogue). The type of
text is indicated typographically.

The user can draw storyboard frames, which appear
next to the text. Storyboard frames are aligned, so that
the column forms a storyboard. Alternatively, a story-
board frame can be imported from the standard
Macintosh “PICT” format. This has been used to
attach storyboard frames scanned from felt-pen
drawings.

Sounds can be recorded using the Macintosh micro-
phone. This feature is intended particularly for trying
out narration or dialogue. (Script writers have been
known to use a tape-recorder for this purpose.) When
sound is attached to an item, an icon of a musical note
appears in the rightmost column. This icon can be
used to play the sound.

Digitized video can be imported from the standard
Macintosh QuickTime format. As with sounds, when a
video clip is attached to an item, an icon of a piece of
motion picture film appears in the rightmost column.
This icon can be used to display the video clip.
QuickTime “movies” can contain sound or they can
consist solely of video. When they are silent, a sound
can be recorded, and even when they are not, their sound
can be overridden with a recorded sound. QuickTime
movies may also have a “poster frame”, which is a
user-designated frame somehow typical of the video
clip. If the QuickTime movie has a poster frame, this
is displayed in the storyboard column, but again, the
user may override this with their own storyboard frame.

The system can also represent timing information.
Time is represented using an hours, minutes, seconds,
and frames representation reminiscent of NTSC time
codes. In addition to the starting time (time at which
an item begins), each item can have two different times
associated with it: a planned length and an actual
length. In the simplest case, we only have a plan. For
example, the titles sequence is planned to be thirty sec-
onds long, but that’s our only idea about it so far. So
the planned length would be thirty seconds. In another
simple case, we only have some raw data. For exam-
ple, the interview has been filmed, we know what clip
we want to use, and that clip is 31 seconds and 26
frames long. This would be the actual length. A more
complex example occurs if we want to trim something
down but we’re not sure how, in which case the planned
length and actual length would both be present, and the
planned length would be shorter than the actual length.

Actual lengths are entered by the user only for
items with no subitems. When an item has subitems,
its actual length is automatically calculated by the sys-
tem as the total of the lengths of the subitems. In the
example above, some subitems of scene 3 have planned

lengths rather than actual lengths, so the calculated ac-
tual length appears in parentheses to indicate its tenta-
tive nature. A planned length overrides an actual length
in further calculations. Thus, when some trimming is
achieved and the actual length value is “good enough”,
we simply delete the planned length, and the actual
length begins to be used by the system for further time
calculations.

It is possible to take the “actual length” value from
the length of the digitized video clip or sound attached
to an item. We have made it easy to override this com-
puterized estimation because we have found that the
video or sound available on the computer is frequently
only an approximation to the actual images or sounds,
which may already exist and thus have precise times as-
sociated with them. It is also possible for the user to
ask for a simple algorithm to be applied to the spoken
text to estimate the time that it would take for an aver-
age actor to speak that text.

Playing an approximation to the movie
Successful authoring of a film requires a vision of

the final form of the film. As the script begins to take
shape, the film should take shape in the author’s mind.
This vision of the film feeds back into the writing of
the script and is crucial if a good script is to result.
Again, the importance of visualization is discussed by
Katz (1991).

It should be apparent that visualization is difficult,
and that any computer assistance would be useful.
MAD supports the visualization of the final form of the
film via the “play” mechanism, in which a user can
play an approximation to the final form of the film at
any time, just as how a word processor allows the user
to print an approximation to the final form of the doc-
ument at any time.

It is possible to play the entire movie or to play a
single item (which includes playing its subitems).
When playing, each item is presented for the correct
amount of time. The system shows what it has for
each item; it does the best job it can to show the user
what that item (scene, shot, whatever) will be like in
the final version of the film. It displays the title and
any descriptive or spoken text; it displays a storyboard
frame if available; it plays a sound if available; it
shows a digitized video clip if available.

If only text is present, the user has the time to read
any spoken text which is displayed, and can attempt to
visualize the scene. Even this turns out to be useful
because the scene is presented for the correct amount of
time and in context before and after other scenes, some
of which hopefully have more associated information.
When digitized video clips with sound are present and
represent the entire contents of their items, MAD be-
comes a feeble assembly device. The usual use is in-
termediate between the extremes of text only versus a
full set of video clips.

Appears in Proceedings Graphics Interface '94, 1994, 133-140.

Example Of Use
In September 1993 MAD was used to design a

movie entitled “SASSE The Collaborative Editor” for
the annual ACM SIGCHI Conference (Baecker, Glass,
Mitchell, and Posner, 1994). The movie’s purpose was
to demonstrate the SASSE collaborative writing system
being developed by our research group (Baecker, Nastos,
Posner, and Mawby, 1993).

First a very top-level outline of the film was de-
fined, a listing of the acts of the production. The first
few acts were then outlined in greater detail in terms of
constituent shots. We then took each of the acts in
turn and began to draft suitable narration for the script.
The narration was recorded so that times could be esti-
mated and judgments made about film flow, timing, and
pacing.

The material required three kinds of shots (see Fig-

ure 2). Shots of the narrator were indicated in meta-text
describing the shot and also in “storyboard frames” con-
taining text only. Longer descriptive meta-text was en-
tered as shooting instructions for the camera crew that
would later film user interactions with the SASSE sys-
tem. Had there been someone on the design team with
respectable sketching skills, good storyboard frames
would have been created. Finally, where suitable video
clips existed, we imported them into MAD and viewed
them in the context of the emerging production.
Playback of the movie was of course incomplete, but
display of the script, reading of the narration, display of
the meagre storyboard, and screening of the video clips
in correct order and with correct timing sufficed to con-
vey a good sense of the whole and to guide the author-
ing process.

Figure 2: Working on SASSE The Collaborative Editor
Text-only storyboard frame drawings proved useful given our lack of sketching skills.
Note the use of bold text in the upper storyboard frame to indicate on-screen titling, as

opposed to the second storyboard frame’s use of regular text to describe the intended shot.

We used MAD for roughly 6-8 hours in this way.
Because the film crew was coming the following day,
and MAD at that time was still very clunky and didn’t
deal with hard copy or still images very well, two
members of the team switched to a traditional word pro-
cessor and markups of paper printouts to produce a final
script and shooting instructions for the director and film
crew. After filming was completed, a traditional com-
puter-based editing console was used for title generation
and post production.

Despite the flaws of the early prototype, MAD al-
lowed us very efficiently to develop and refine a concept
for the movie, write and edit the script, revise the script
after hearing how it sounded and how it flowed, and pre-
view likely video sequences for inclusion in the film in

the context of a playback of a very rough but continu-
ally improving approximation to what the final film
would be like.

Summary And Conclusions
We have presented a system which uses multimedia

to support the authoring of traditional format motion
pictures. It allows a user to manipulate structured
movie scripts with attached sounds, images, and video
clips. The ability to play an approximation to the final
film at any time contributes to the author’s ability to
visualize the final result.

MAD is still under development, as are its underly-
ing ideas. We are using it to attempt to explore the
process whereby scripts get created, to determine how

Appears in Proceedings Graphics Interface '94, 1994, 133-140.

best to support this process.

Four approaches to the authoring of motion pictures
More fundamentally, we have identified four types

of approaches to the authoring of movies, which we
call script-based (text script), storyboard-based, avail-
able-shot-based, and flow-based. These are idealized
types; in practice some combination of these types of
approaches will be used.

The script-based approach corresponds most
strongly to traditional practice and is a substantial com-
ponent of typical introductory filmmaking instruction.
In the script-based approach, a text script containing a
linear representation of a hierarchical structure is devel-
oped using technology such as a word processor that
has no specific support for filmmaking. An easy aug-
mentation to this approach is to use an outline pro-
cessor rather than a word processor.

The storyboard-based approach involves the draw-
ing of storyboard frames in a sequence. A storyboard is
often annotated with text such as dialogue or stage di-
rections. This can provide a more visual idea of the
film, but only occasionally can it substitute for the text
script.

The available-shot-based approach is particularly
characteristic of documentaries. When making a docu-
mentary, often footage is collected at the same time as
the overall flow of the film is designed. Subsequent to
all filming, the footage must be examined and orga-
nized, and only at this point does the script begin to
take shape. The available-shot-based approach is char-
acteristic of some videos prepared for computer confer-
ences, which often take a somewhat documentary form.

Flow-based approaches attempt to keep the entire
structure of the film in mind during film authoring and
editing. In traditional film editing, the filmmaker may
go back and forth across a particular cut many times,
adding or removing an amount of film as small as a
single frame to attempt to improve the transition.
There are also larger flow-based goals; one is the deci-
sion of how to divide the total length of the film
among its sections. The choices as to the ratio of
screen time allotted to various aspects of the film can
dramatically affect the result.

It should be clear that a system such as MAD
should support all of these approaches. We feel that the
current version of our prototype is primarily effective in
supporting the script-based and available-shot-based ap-
proaches. The storyboard-based approach might appear
to be supported, but the current prototype storyboard
frame facility fails to provide genuine support for story-
boards through a number of functionality and interface
problems. Our thoughts about the support of flow-
based approaches are not very developed yet, although
the planned length versus actual length distinction and
the automatic time calculations provide a small measure
of support for these kinds of authoring activities.

Genuine support for flow-based approaches would
involve the ability to display abstractions of film struc-
ture or content over time. For example, a “timeline”
display (Harrison, Owen, and Baecker, 1994; Owen and
Baecker, 1994) in which different rows indicated dif-
ferent speakers could be used to judge whether or not a
particular character is speaking too much.

Future research and development directions
It has become clear that different approaches to the

authoring of movies require different interfaces. In the
current prototype, the interface is not configurable, but
a successful system would require a variety of new
columns of data, ranging from supplementary text such
as actor or prop availability, to alternate “takes” of a
video clip, to budget information. With the resulting
large number of columns available, it would become
crucial to be able to choose which columns were dis-
played and what fraction of the screen space they took
up. Some configurability is also essential to support a
true storyboard-based approach; to take one example,
the layout as we have it is apparently not compatible
with the usual visual layout of a storyboard, because it
is too text-script-focused.

Greater direct support for the various datatypes ap-
pears to be required. Sometimes one has a collection of
video clips without a clear idea of the sequence in which
they are to be shown or precisely how they will fit into
the text script. Storyboard frames drawn for one shot
may be more appropriate for another shot, or a user
may wish to begin editing one shot’s storyboard frame
using another shot’s storyboard frame or the scene’s
storyboard frame as a template. A “slide-sorter” inter-
face for video clips and storyboard frames would permit
a user to manipulate these items outside the context of
the text script and structure. In some cases, a user will
want to import or draw these items before knowing
where in the text script they will be placed. It might be
possible to build a storyboard-focused interface within
the slide-sorter. As well, a slide-sorter interface could
ease the task of selecting clips from existing video
footage, ideally in concert with the facility in Timelines
(Harrison, Owen, and Baecker, 1994) that allows the
selection of video clips based on logging information
and on displays of film data with respect to a timeline.

To support a flow-based approach, other overview
mechanisms are necessary. The “play” mechanism pro-
vides one overview mechanism, and the time calcula-
tions could be construed as another. It should be possi-
ble to construct various static displays resembling time-
lines, to abstract various attributes as they change over
time, as discussed in the previous subsection.

Up to this point, observation of realistic use of the
system has been informal only. This has been useful
for early feedback but does not comprise a sufficiently
sophisticated evaluation procedure. We are currently
developing plans to observe and analyze sustained use

Appears in Proceedings Graphics Interface '94, 1994, 133-140.

of MAD.
It is also apparent that once all this data is in the

system, there should be a graceful transition to editing.
For example, once a video clip is digitized and has been
attached to an item in MAD, it should not be necessary
to hunt for the video segment on the original tapes to
perform the final edit; the time-codes from the video-
tapes should be tracked by the system as well. In
effect, there should be a seamless interface to something
such as the Avid Media Composer.

We shall also pursue the connection to multimedia
authoring. Although other tools for multimedia author-
ing exist (e.g. de Mey and Gibbs, 1993; Hamawaka and
Rekimoto, 1993; Hardman, van Rossum, and
Bulterman, 1993), we believe that in some cases supe-
rior presentations can be produced by using an expli-
citly filmmaking-oriented approach. Although the orig-
inal goal of MAD is the authoring of traditional films,
we intend to generalize the concepts and system to sup-
port the authoring of multimedia productions.

Acknowledgments
Russell Owen provided crucial video and

QuickTime technical support. Geof Glass and Russell
Owen assisted with software development.

Valuable suggestions were contributed by members
of the Multimedia Research Group of DGP and by
members of The CulTech Collaborative Research
Centre at York University.

The DGP laboratory is financially supported in part
by NSERC, IRIS, ITRC, CulTech, and Apple
Computer.

References
Apple Computer, Inc., 1993. Inside Macintosh:

QuickTime. Addison-Wesley.
Avid Technology, Inc., 1993. Media Composer Basic

Editing Guide. Documentation accompanying ver-
sion 4.5 of the software product. Avid
Technology, Inc., Tewksbury, Massachusetts.

Baecker, Ronald M. and Marcus, Aaron, 1990. Human
Factors and Typography for More Readable
Programs. ACM Press, New York.

Baecker, Ronald M., Nastos, Dimitrios, Posner, Ilona
R., and Mawby, Kelly L., 1993. The User-Centred
Iterative Design of Collaborative Writing Software.
Proceedings of INTERCHI ’93. ACM Press, New
York, 399-405, 541.

Baecker, Ronald M., Glass, Geof, Mitchell, Alex, and
Posner, Ilona, 1994. SASSE the Collaborative
Editor. CHI ’94 Video Proceedings, to appear in
SIGGRAPH Video Review. ACM, New York.

Davenport, Glorianna, Smith, Thomas G. Aguierre, and
Pincever, Natalio, 1991. Cinematic Primitives for
Multimedia. Computer Graphics and Applications
11(4), 67-74.

de Mey, Vicki and Gibbs, Simon. A Multimedia
Component Kit. Proceedings of ACM
Multimedia 93 (Anaheim, California, August 1-6,
1993). ACM, New York, 291-300.

Graham, T.C. Nicholas and Cordy, James R., 1990.
GVL: A Graphical, Functional Language for the
Specification of Output in Programming
Languages. Proceedings of IEEE 1990
International Conference on Computer Languages
(New Orleans, March 1990).

Hamawaka, Rei and Rekimoto, Jun, 1993. Object
Composition and Playback Models for Handling
Multimedia Data. Proceedings of ACM
Multimedia 93 (Anaheim, California, August 1-6,
1993). ACM, New York, 273-281.

Hardman, Lynda, van Rossum, Guido, and Bulterman,
Dick C.A., 1993. Structured Multimedia
Authoring. Proceedings of ACM Multimedia 93
(Anaheim, California, August 1-6, 1993). ACM,
New York, 283-289.

Harrison, Beverly L. and Baecker, Ronald M., 1992.
Designing Video Annotation and Analysis
Systems. Proceedings of Graphics Interface ’92
(Vancouver, May 11-15, 1992). Canadian
Information Processing Society, Toronto, 157-166.

Harrison, Beverly L., Owen, Russell, and Baecker,
Ronald M., 1994. Timelines: An Interactive
System for the Collection and Visualization of
Temporal Data. Proceedings of Graphics
Interface ’94 (Banff, May 16-20, 1994), this issue.

Katz, Steven D., 1991. Film Directing Shot by Shot:
Visualizing from Concept to Screen. Michael
Wiese Productions, Studio City, California.

Loy, Gareth, 1985. Musicians Make a Standard: The
MIDI Phenomenon. Computer Music Journal
9(4), 8-26.

MacroMedia, Inc., 1993. MacroMedia Director
version 3.1 (software product with accompanying
documentation). MacroMedia, Inc., San Francisco.

Martin, James and McClure, Carma, 1985.
Diagramming Techniques for Analysts and
Programmers. Prentice-Hall, Inc.

Owen, Russell and Baecker, Ronald M., 1994.
Timelines: A Tool for the Gathering, Coding, and
Analysis of Usability Data. Formal demonstration
at ACM CHI ’94 (Boston, April 24-28, 1994).

Pea, Roy D., 1991. Learning through Multimedia.
Computer Graphics and Applications 11(4), 58-
66.

Price, Blaine A., Baecker, Ronald M., and Small, Ian
S., 1993. A Principled Taxonomy of Software
Visualization. Journal of Visual Languages and
Computing 4, 211-266.

Symantec, 1990. MORE 3.0 Reference
(documentation accompanying the software

Appears in Proceedings Graphics Interface '94, 1994, 133-140.

product). Symantec Corporation, Cupertino,
California.

Woolsey, Kristina Hooper, 1991. Multimedia
Scouting. Computer Graphics and Applications
11(4), 26-38.

